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Introduction 

 

To fully understand the causes and potential 

treatments of tendon injuries, it is critical to 

first identify and describe their mechanical 

properties. Unlike bone, which can be 

reasonably described using linear elastic 

models, tendons require more complex 

mathematical descriptions such as 

viscoelastic and hyperelastic models to 

account for nonlinear sliding behavior 

between tendon components [7]. 

Functioning primarily to transmit force from 

the muscles to the skeleton, tendons are 

composed of collagen fibers arranged in 

bundles of increasing size [4]. This 

organization and the intrinsic properties of 

collagen (and to a smaller extent, elastin) 

result in a tissue specialized for one 

dimensional tensile force transfer and in some 

cases such as the Achilles tendon, energy 

storage and release. As a result, tendonous 

tissue is especially well suited for one 

dimensional tensile testing and numerical 

modeling [4]. 

In this report, several loading tests were 

applied to tendons taken from rat tails. 

Elasticity and viscosity parameters were then 

extrapolated from the data and used to 

construct several finite element model (FEM) 

simulations. 

 

The loading tests applied to the rat tail 

tendons consisted of a creep test, cyclic 

loading test, and several tensile tests at 

different strain rates. These tests were chosen 

to investigate both the linear and nonlinear 

elastic and viscoelastic properties of the 

tendon including young’s modulus, hysteresis, 

and creep behavior. Together, these 

parameters describe tendon behavior during 

both explosive and sustained motion. 

Based on research by Herrick et. al. and the 

characteristics of common viscoelastic 

models (diagram 3) we hypothesized that the 

tendons would exhibit slightly increased 

stiffness and a correspondingly greater 

young’s modulus at higher strain rates [2]. We 

also predicted that the toe region would show 

little if any change in length based on previous 

research by Ng et al. [6].  

In the creep test, we hypothesized that 

displacement would slowly increase over time 

when a constant force was applied. Based on 

research by Shen et. al., we expected a time 

constant in the region of 50s-100s [7].   

Finally, for the cyclic loading test, we 

hypothesized that the energy loss in a 

loading-unloading cycle would decrease as 

more loading cycles were completed based 

on previous research by Finni et. al. [1]. 
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Experimental Lab 

 

  

 

 

 

 

 

First, the effect of tensile strain rate on the 

mechanical response of the tendons was 

investigated by stretching the sample until a 

force of 10N was detected. Three trials were 

conducted at displacement rates of 0.1mm/s, 

1.0mm/s, and 10mm/s. The force-

displacement data obtained was used to 

derive the stress-strain curve according to 

equations (a) and (b) in Diagram 2 under the 

assumption that the tendon possessed a 

circular cross-section. Using linear 

regression, a line of best fit was calculated for 

the elastic region of the graph. The young’s 

modulus for each strain rate was taken as the 

slope of the line of best fit. Next, the toe 

region of the stress-strain curve was defined 

as the region to the left of the elastic region, 

and the maximum strain obtained during the 

toe region was recorded for comparison 

between the strain rates. 

Next, to determine the viscoelastic creep 

behavior of the tendons, a sustained tensile 

load of 10N was applied for 2 minutes 

following an initial linear ramp up from 0 to 

10N over 10 seconds. The displacement 

during the sustained load was recorded and 

combined with geometrical measurements to 

create a stress-strain curve using equations 

(a) and (b). Finally, the elastic (Ei) and viscous 

(η) parameters in the Maxwell, Kelvin-Voigt, 

and Standard Linear Solid (SLS) viscoelastic 

material equations determined by fitting the 

stress-strain curve (brief derivations of the 

equations are shown in diagram 3). The fitting 

was accomplished via MATLAB optimization 

tool fminsearch which was used to minimize 

the root mean squared (rms) error   

 

Diagram 1. A schematic illustrating the geometry 

of the tensile testing apparatus and fascicle 

bundle 

Methods 

The tendons used in all of the loading tests 

were dissected out of a rat tail. Rat tail tendons 

in particular were chosen due to both 

availability and relatively consistent fibril length 

and cross-sectional area [3]. To isolate the 

tendons, the skin was first cut and pulled back 

to reveal the tendon fascicles surrounding the 

tail bone.  Each fascicle was then carefully 

removed to avoid tissue damage and stored in 

the refrigerator under buffered saline solution to 

preserve the tissue until testing. 

Before loading, the tendon fascicles were set 

out to reach room temperature. Six fascicles of 

similar length were then laid out and their ends 

were wrapped around wooden sticks and 

covered with a small piece of sandpaper to 

prevent slipping during the tests. These ends 

were then clamped into the vices of a KIP 

Instron 8511 tensile testing frame and 

measured as shown in diagram 1. During all 

steps of the preparation and testing process 

the fascicles were periodically wet with the 

saline buffer solution. 
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(CEL) was calculated as the difference of the 

sum of stresses multiplied by strains from the 

loading and unloading curves via equation (c). 

Results 

The results of the tensile strain rate test are 

presented in table 1. Increasing the strain rate 

resulted in a greater measured young’s modulus 

tough the magnitude of the change was rather 

small: increasing the strain rate 100x resulted in 

an 18.1% greater young’s modulus. Maximum 

stress observed similarly increased by 15.6% 

over the three trials. The toe region showed no 

significant change in length and the tendons 

began exhibiting linear-elastic behavior at 

around 0.9% strain in all of the trials as shown in 

table 1. 

The strain data obtained from the creep test is 

shown in figure 1. Additionally, the strains 

calculated using the viscoelastic models are 

displayed over the experimental data. Out of all 

the models, the SLS preformed the best with a 

rms error of 7.14%. The Kelvin-Voigt model also 

captured the shape of the experimental data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diagram 3. Viscoelastic model equations (bolded) and abbreviated derivations. All models were derived from 

initial equations based on the spring and dashpot equations. Stress (σ) was then set to σ0 and 
𝑑𝜎

𝑑𝑡
 was set to 

zero. The resulting equations were solved for strain (𝜖) and differential equations were solved in terms of 

elastic (Ei) and viscous (𝜂) parameters. 

 

 

between the experimental data points and 

calculated values for each model. The time 

constant t, defined as the time when strain 

reached 63% of its asymptotic value, was also 

determined. 

Lastly, tendon behavior under repeated loads 

was investigated due to its relevance for 

physiological motions such as walking and 

jogging. The tensile force exerted by the 

tendons was measured as they were stretched 

1.1mm from a resting length of 22.86mm (about 

5% strain) and relaxed 5 times over 11s. Next, 

the stress-strain curves were plotted, again 

using equations (a) and (b). The area between 

the loading (upper) and unloading (lower) 

curves corresponding to cyclic energy loss 
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Diagram 2. Equations used during stress-strain 

and hysteresis calculations   
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and had a rms error of 7.82%. The Maxwell 

model preformed the worst with a rms error of 

8.52%. Lastly, the time constant for the tendon 

under 10N of constant force was t = 46.96s, 

calculated using strain values calculated via the 

SLS model.  

The force-displacement data and calculated 

CEL for each cycle during the cyclic loading test 

is shown in figure 2.  Over the course of the trial, 

CEL decreased by 36.3% with the greatest drop 

between consecutive cycles (15.6%) occurring 

between cycle 1 and cycle 2. Peak force 

experienced during each cycle also decreased 

to, albeit to a lesser extent: 8.6% over the 

course of the trial and 3.1% between cycle 1 

and cycle 2. 

 

 

Table 1. Summarized data for tensile strain rate trials. Toe region length was defined as the 

strain at which the linear approximation intersected experimental data 

Strain Rate Youngs Modulus (MPa) Toe region length (%) Maximum Stress (MPa) 

0.10 mm/s 176.3 0.89 4.54 

1.0 mm/s 205.1 0.92 4.67 

10.0 mm/s 208.2 0.92 5.25 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (Left) Loading and unloading force-displacement curves for the tendon under 5 loading 

cycles to 1.1mm. Top curves for each color correspond to loading and bottom curves to unloading. 

(Right) Energy loss for each cycle corresponding to area between the loading and unloading curves. 

 

Figure 1. Experimental strain-time data (grey) 

plotted with calculated viscoelastic models. 
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Discussion 

Overall, the tendon behavior was consistent 

with the predictions made in the hypothesis 

for the various tests and all of the parameters 

we set out to measure in the hypotheses were 

successfully measured. In the strain tests, the 

~18% increase in young’s modulus over the 

three trials is consistent with data found in in-

vivo horse tendon trials by Herrick et. al. [2]. 

The actual values, however, are smaller than 

those in literature – for example compare the 

calculated value of 205.1MPa in the 1.0mm/s 

trial to Herrick et. al.’s average value of 

827MPa [2]. A likely reason for this 

discrepancy is the swelling of tendon fascicles 

during storage under the buffer solution. This 

swelling has been shown to have a negligible 

effect on the force displacement data but the 

accompanying increase cross sectional area 

could result in far lower calculated stress 

values [3]. This idea is supported by the fact a 

study using a similar isolated fascicle testing 

procedure also recorded lower values of 

about 150MPa [7]. 

As a result of this increased cross-sectional 

area, lower stresses would be associated with 

the same strain, at least partially explaining 

the smaller values for young’s modulus seen 

here. The toe region’s lack of change, though 

expected, can still shine light on the crimp 

structure seen in collagen fibrils (see diagram 

4) [8]. A possible explanation for the 

uniformity of the toe region is that the “de-

crimping” of collagen is independent of strain 

rate, though further investigation such as 

microscopy would be necessary to confirm 

this hypothesis.  

 

The shape of the creep data was quite similar 

to that in literature though the time constant 

was somewhat smaller (46.96s vs. ~100s) 

[7]. It is important to note that the rapid 

fluctuations in recorded strain resulting in a 

‘fat’ curve for the experimental data are a 

result of the testing apparatus attempting to 

maintain a constant 10N load. Consequently, 

the rms error of all of the models is likely 

greater than it would be if the apparatus could 

perfectly maintain the load. Additionally, it 

appears that the tendon was not able to fully 

reach a steady-state strain during the two 

minutes of the trial which could partially 

explain the lower-than-hypothesized time 

constant. As for the mathematical models, it is 

obvious that the Maxwell equation is unable to 

capture the nonlinear creep behavior of the 

tendon. Both the SLS and Kelvin-Voigt, 

however, provide reasonable approximations. 

While the SLS has the advantage of lower rms  

Diagram 4. Example stress-strain curve from 

0.10mm/s strain rate test. Depiction of collagen 

fibril structure at each region is shown to the right. 
(Note micro failure is not shown in the example curve and 

typically occurs at 10-15% strain [5].)  

Collagen Fibril 

structure 

Crimped 

Straight 

Micro failure 

A

 

B 

A

 

B 
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 Numerical Lab 

Methods 

Using data taken from a similar series of 

experiments run on rat-tail tendons, a FEM 

was constructed to compare the accuracy of 

various material models. First, a simple linear 

elastic model using the young’s modulus of 

326MPa determined from a 1mm/s tensile 

strain test was constructed. The stress-strain 

data was also used to fit several hyperelastic 

material models: a Neo-Hookean model with a 

residual of 96.18 and 1st, 2nd, and 3rd order 

Ogden models which had residuals of 15.93. 

10.63, and 7.81 respectively. The 3rd order 

Ogden model was chosen for the hyperelastic 

simulations as it had the lowest residual. A 

similar procedure was used to fit viscoelastic 

1st, 2nd, and 3rd order Prony models to the 

creep data using an assumed Poisson’s ratio 

of 0.30. The resulting models had residuals of 

2.63e-4,1.70e-5, and 5.09e-6 respectively. 

The 3rd order Prony model was selected and 

combined with the 3rd order Ogden model to 

create a hyper-viscoelastic model used in the 

simulations. 

Once the material model parameters were 

fitted to the experimental data, a simple 2-D 

rectangle with dimensions 59.80mmx1.39mm 

was created and meshed using 12 elements 

to represent the tendon. The bottom nodes 

were restricted in all dimensions of movement 

to simulate the clamp of the testing apparatus 

and a 3.05mm displacement was applied to 

the top nodes (see diagram 5). Three different 

rates of displacement - 0.002 mm/s (Slow), 1 

mm/s (Normal), and 500 mm/s (Rapid) – were 

applied to the tendon mesh under each of the  

 

error, it also predicts unrealistic behavior at 

the beginning of the strain-time curve (for 

example, a strain of 0.1% at 0 seconds), so 

both models should be taken into 

consideration for future applications [7]. The 

general numerical modelling optimization 

could likely be extended human tendons as 

well as all three models derived via rms error 

minimization were stable with regard to initial 

parameter estimates as long as they were in a 

reasonable range. 

Lastly, the cyclic loading tests exhibited 

decreasing energy loss as hypothesized. 

Interestingly, the hysteresis data obtained 

from the cyclic loading tests was very similar 

to data from recent in-vivo human studies 

conducted using ultrasound imaging [1]. After 

converting the data from absolute energy loss 

(J) to relative energy loss to total energy 

under the curve (%), the rat tail tendons were 

found to have a maximum and minimum 

hysteresis of 32.4% and 24.8% on cycles 1 

and 5 respectively. Compare this to the 

ultrasound studies which recorded hysteresis 

values from 36% to 7% in human Achilles’ 

tendons. In-vitro animal studies, however, 

arrived at much lower hysteresis values 

ranging from 10.7% to 4.8% [1]. Notably, the 

animal studies all included extensive 

preconditioning, often subjecting the tendon 

to hundreds of loading cycles before 

recording hysteresis values. Future testing on 

the rat-tail tendons over several thousand 

cycles would be useful and could paint a fuller 

picture of energy loss over extended periods 

of time reflecting activities such as long 

distance running or cycling. When designing 

this or other future tests, it is important to 

consider the cost and ethical implications of 

animal testing. These can often be avoided 

using numerical methods such as those 

introduced in the following section.  
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3 selected material models for a total of 9 

simulated tests. 

Finally, the force-displacement data for each 

of the trials was compared to the 1mm/s 

experimental tensile data for both validation 

and to examine the effect of strain rates. Both 

the experimental and simulated test data are 

shown in figure 3. 

Results 

Graphs of force-displacement data for the 

simulated tensile tests under the discussed 

material models and strain rates are 

presented in figure 3. Experimental data is 

shown for comparison. The rms error and 

parameter values for each model at a strain 

rate of 1.0 mm/s (corresponding to that of the 

experiment) were calculated and are 

presented in table 2 along with the predicted 

and experimental maximum stress and strain 

values.  

Notably, the linear model has over twenty 

times the rms error as the hyperelastic and 

hyper-viscoelastic models, which had nearly 

identical error values. The maximum 

predicted stress values for the hyperelastic 

and hyper-viscoelastic models were also 

similar and underestimated the experimental 

maximum stress by around 7% while the 

linear elastic model overshot by over 44%.  

 
Figure 3. (Above) Comparison of material models 

and strain rates used in FEM simulations. Note that 

only the Hyper-Viscoelastic Model shows any strain 

rate dependence. 

Diagram 5. (Below) Depiction of FEM geometry, 

boundary conditions, and loading direction 

Loading Direction (y) 

Clamp boundary 

constraints 

x 

y 
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Table 2. Error values, maximum stresses, and parameter values for the chosen material 

models. Parameters μi, αi, define the shear modulus while d defines the bulk modulus.  
Material Model Linear 

Elastic 

3rd Order Ogden 3rd Order Hyper-

Viscoelastic 

Experimental 

Max Stress (MPa) 14.62 9.44 9.39 10.15 

RMS Error (%) 62.68 3.73 3.93 - 

Young’s Modulus (MPa) 326 - - 326 

Poisson’s Ratio 0.30 - - 0.30 

μ1 (MPa), α1 - -3149.22, 0.831 8.5496,1.501 - 

μ2 (MPa), α2 - 0.728, 46.534 17.013, 0.845 - 

μ3 (MPa), α3 - 945.29, 2.748 1.799, 2.802 - 

d (m2/N) - - 125.00 - 

 
Discussion 

As expected, the linear elastic model was 

unable to capture the tendon behavior and 

should only be used as an extremely rough 

approximation before applying more accurate 

material models. Both the 3rd order Ogden 

hyperelastic and 3rd order hyper-viscoelastic 

models (based on the 3rd order Prony Series), 

however, provided a reasonable approximation 

of tendon behavior with similar rms error to 

existing numerical models [7]. 

If strain rate or creep behavior are a concern, 

the hyper-viscoelastic model is the most 

appropriate choice as no other model showed 

any response to the speed of deformation. This 

is because hyperelastic equations have no 

strain rate dependence, so viscoelastic 

equations are necessary to capture time-

dependent behavior. If time dependent behavior 

is unimportant to the particular experiment, 

however, the Ogden hyperelastic model is likely 

a sufficient and less computationally expensive 

alternative. If the region of interest is very small 

and lies past the toe region, even linear models 

may give some insight into tendon behavior. 

With regard to ethics, finite element models 

provide an animal free and rapid way to test a 

huge number of possible loading conditions. In-

vivo ultrasonography is another promising  

method to measure tendon properties without 

harming laboratory animals, and has shown 

some success in recent human studies. 

Discussion 

Overall, both experimental and numerical 

results emphasize the nonlinear nature of 

tendon biomechanics. In stark contrast to the 

biomechanics of bone tissue, time plays a 

significant role in a tendon’s response to both 

rapid and extended forces [2]. Although both 

tissues are comprised of repeating 

substructures (haversian canals and fibril 

bundles in bone and tendon respectively), 

bone lacks significant internal movement. 

Modeling tendons is also complicated by 

crimps in the collagen microstructure not 

seen in bone [8]. These differences reflect the 

contrasting yet complementary purposes of 

tendon and bone tissue: tendons must be 

flexible and have high tensile strength to 

transmit muscle force to the bone, which must 

be rigid and strong in compression to use this 

force to move the body. 

As tendon is such a mechanically complicated 

material, an abundance of experimental tests 

is needed to accurately determine its 

properties [3]. Experimental tests, however, 

are often costly and usually require animal 
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samples. As discussed previously, numerical 

methods such as finite element modeling are 

one attractive way around these problems. 

Numerical methods have the added benefit of 

being significantly faster, more scalable, and 

easier to tweak than physical experiments. As 

such, they are well suited to research where 

large amounts of data under many conditions 

are required. The importance of experimental 

evidence to construct and validate these 

models, however, is undeniable, and it is 

unlikely that we can completely replace 

physical testing.  

Although this research focused on the 

tendons of a rat tail, the results are largely 

applicable to human tendons as well. Of 

course, there are some subtle differences 

between the two, but the composition and 

organization of rat tail and human tendons are 

remarkably similar [3]. Furthermore, unlike 

bone which has a more complex internal 

architecture that restructures in response to 

stress, tendon tissue is organized in the same 

way throughout the body in both rats and 

humans [3]. It follows that the mechanics of 

the two should mirror one another. This was 

confirmed at least in the case of cyclic 

loading, where the results of the rat tendon 

testing were nearly identical to that of 

ultrasonography studies of the human Achilles 

tendon [1].  

To conclude, the results of this study provide 

a broad but by no means comprehensive look 

into the material properties of tendon tissue. 

Further experimental tests, both to obtain 

larger sample sizes and to measure behavior 

under more extreme or prolonged loading are 

warranted to provide data for more accurate 

numerical models. Microimaging during these 

experimental tests would also be an 

interesting area for further research to confirm 

the micro and nano-scale interactions 

responsible for the behavior observed. 

Altogether, though, the data from this and 

other studies gives us a solid understanding 

of how tendons work can help guide 

treatment of tendon injuries.  

 

References  

[1] Finni T., Peltonen J., Stenroth L., Cronin 

N.J. Viewpoint: On the hysteresis in the 

human Achilles tendon. Journal of Applied 

Physiology. Vol.114(1), 2013, pp. 515-

517 

[2] Herrick W.C., Kingsbury H.B., Lou D.Y.S. 

A Study of the Normal Range of Strain, 

Strain Rate, and Stiffness of Tendon. 

Journal of Biomedical Materials Research. 

Vol.12(1) 1978, pp. 877-894. 

[3] Ker R.F., Mechanics of tendon, from an 

engineering perspective, International 

Journal of Fatigue. Vol.29(6), 2007, pp. 

1001-1009. 

[4] Kirkendall DT, Garrett WE. Function and 

biomechanics of tendons. Scandinavian 

Journal of Medical Science and Sports. 

Vol.7(2), 1997, pp. 62-66.  

[5] LaCroix A.S., Duenwald-Kuehl S.E., Lakes 

R.S., Vanderby R. Jr. Relationship 

between tendon stiffness and failure: a 

metaanalysis. Journal of Applied 

Physiology. Vol.115(1) 2013, pp. 43-51. 



Boyne 10 
 

 

 

 

[6] Ng BH, Chou SM, Lim BH, Chong A. 

Strain rate effect on the failure properties 

of tendons. Proceedings of Institute of 

Mechanical Engineering. Vol.218(3), 

2004, pp. 203-206. 

[7] Shen, Z. L., Kahn, H., Ballarini, R., Eppell, 

S. J. Viscoelastic properties of isolated 

collagen fibrils. Biophysical 

journal. Vol.100(12), 2001, pp. 3008–

3015. 

[8] Shim V, Fernandez J, Besier T, Hunter P. 

Investigation of the role of crimps in 

collagen fibers in tendon with a 

microstructurally based finite element 

model. Annual International Conference 

IEEE English Medical Biology Society. 

2012, pp. 4871-4874. 

 


